Tight Streaming Lower Bounds for Deterministic Approximate Counting

Yichuan Wang (Tsinghua University)

Jan 13, 2025

The Problem Setting

Problem (k-Counter Approximate Counting)

Given an input $x \in [k]^n$. For each word $j \in [k]$, approximate the number of j's in x with additive error n/(10k). Regime: $n \gg k \gg 1$.

The Problem Setting

Problem (k-Counter Approximate Counting)

Given an input $x \in [k]^n$. For each word $j \in [k]$, approximate the number of j's in x with additive error n/(10k). Regime: $n \gg k \gg 1$.

Computation Model (Streaming Model)

We only have (standard order) read-once access to the input string. Memory size is bounded.

▶ i.e., after reading the first *i* input words, we can only carry limited amount of information when moving on to the $i + 1, i + 2, \dots, n$ -th words.

The Problem Setting

Problem (*k***-Counter Approximate Counting)**

Given an input $x \in [k]^n$. For each word $j \in [k]$, approximate the number of j's in x with additive error n/(10k). Regime: $n \gg k \gg 1$.

Computation Model (Streaming Model)

We only have (standard order) read-once access to the input string. Memory size is bounded.

▶ i.e., after reading the first *i* input words, we can only carry limited amount of information when moving on to the $i + 1, i + 2, \dots, n$ -th words.

Theorem (Main Result)

(Deterministic and worst-case) k-counter approximate counting requires $\Omega(k \log(n/k))$ bits of memory in the streaming model.

▶ Remark: the trivial algorithm (maintains the exact count) uses $\log \binom{n+k-1}{k-1} \leq O(k \log(n/k))$ bits of memory.

Implication: Optimality of Misra-Gries

Theorem (Main Result)

(Deterministic and worst-case) k-counter approximate counting requires $\Omega(k \log(n/k))$ bits of memory in the streaming model.

▶ Misra-Gries Algorithm (1982): Let $U, n \gg k \gg 1$, given an input string $x \in [U]^n$. Their streaming algorithm approximates the count of each $j \in U$ with additive error n/(10k), using $O(k \log(n/k) + k \log(U/k))$ bits of memory.

Implication: Optimality of Misra-Gries

Theorem (Main Result)

- ▶ Misra-Gries Algorithm (1982): Let $U, n \gg k \gg 1$, given an input string $x \in [U]^n$. Their streaming algorithm approximates the count of each $j \in U$ with additive error n/(10k), using $O(k \log(n/k) + k \log(U/k))$ bits of memory.
- On the lower bound:
 - Previously, we already known an $\Omega(k \log(U/k))$ lower bound. (Consider the case that k words each appear n/k times, each k-subset of [U] must have a different output.)
 - Our result implies an $\Omega(k \log(n/k))$ lower bound!

Read-Once Branching Programs (ROBP)

- Streaming lower bounds \leftarrow ROBP width lower bounds.
- \blacktriangleright Multi-layered directed graph. Nodes in layer *m* represents all possible memory states after the first *m* input words;
- ▶ n: input length; w: width (each layer contains $\leq w$ nodes), $w = 2^{\text{memory size}}$;
- \blacktriangleright Each node has k outgoing edges, which represents what is the next state given the next input word.

Previous Results

Theorem (Main Result)

Previous Results

Theorem (Main Result)

- For k = 2 (approximate the number of 1's in a $\{0, 1\}$ -string), previously we did not even know a super-constant width lower bound!
 - We only know lower bounds in the *multiplicative error* setting: approximate counting with constant multiplicative error requires $n^{\Omega(1)}$ width. [M. Ajtai et al. (2022)]

Previous Results

Theorem (Main Result)

- For k = 2 (approximate the number of 1's in a $\{0, 1\}$ -string), previously we did not even know a super-constant width lower bound!
 - ▶ We only know lower bounds in the *multiplicative error* setting: approximate counting with constant multiplicative error requires $n^{\Omega(1)}$ width. [M. Ajtai et al. (2022)]
- The standard communication bottleneck method (consider the communication complexity between the two halves of the input) does not work here.
 - Sending an approximation of #1's in the first half only needs O(1) bits.

Rectangle Labeling

Label each node v in the ROBP with a rectangle $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_{k-1}, b_{k-1}]$. a_j (resp. b_j) is the smallest (resp. largest) possible number of j's in order to reach v.

- ▶ These rectangles can be computed easily by dynamic programming;
- ▶ $b_j a_j \leq (2 \cdot \text{additive error})$ in layer *n*. (Characterizes the ROBP's correctness.)

Rectangle Labeling

Label each node v in the ROBP with a rectangle $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_{k-1}, b_{k-1}]$. a_j (resp. b_j) is the smallest (resp. largest) possible number of j's in order to reach v.

▶ These rectangles can be computed easily by dynamic programming;

▶ $b_j - a_j \leq (2 \cdot \text{additive error})$ in layer *n*. (Characterizes the ROBP's correctness.)

Rectangle Labeling

Label each node v in the ROBP with a rectangle $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_{k-1}, b_{k-1}]$. a_j (resp. b_j) is the smallest (resp. largest) possible number of j's in order to reach v.

- ▶ These rectangles can be computed easily by dynamic programming;
- ▶ $b_j a_j \leq (2 \cdot \text{additive error})$ in layer *n*. (Characterizes the ROBP's correctness.)

Translate the whole problem into analyzing the rectangles:

▶ What happens when moving on to the next layer:

Rectangle Labeling

Label each node v in the ROBP with a rectangle $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_{k-1}, b_{k-1}]$. a_j (resp. b_j) is the smallest (resp. largest) possible number of j's in order to reach v.

- ▶ These rectangles can be computed easily by dynamic programming;
- ▶ $b_j a_j \leq (2 \cdot \text{additive error})$ in layer n. (Characterizes the ROBP's correctness.)

Translate the whole problem into analyzing the rectangles:

▶ What happens when moving on to the next layer:

< □ > < □ > りへへ

6/12

Rectangle Labeling

Label each node v in the ROBP with a rectangle $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_{k-1}, b_{k-1}]$. a_j (resp. b_j) is the smallest (resp. largest) possible number of j's in order to reach v.

- ▶ These rectangles can be computed easily by dynamic programming;
- ▶ $b_j a_j \leq (2 \cdot \text{additive error})$ in layer n. (Characterizes the ROBP's correctness.)

- ▶ What happens when moving on to the next layer:
 - Split each rectangle into k rectangles; (itself + shifting in each direction)

Rectangle Labeling

Label each node v in the ROBP with a rectangle $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_{k-1}, b_{k-1}]$. a_j (resp. b_j) is the smallest (resp. largest) possible number of j's in order to reach v.

- ▶ These rectangles can be computed easily by dynamic programming;
- ▶ $b_j a_j \leq (2 \cdot \text{additive error})$ in layer n. (Characterizes the ROBP's correctness.)

- ▶ What happens when moving on to the next layer:
 - Split each rectangle into k rectangles; (itself + shifting in each direction)

Rectangle Labeling

Label each node v in the ROBP with a rectangle $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_{k-1}, b_{k-1}]$. a_j (resp. b_j) is the smallest (resp. largest) possible number of j's in order to reach v.

- ▶ These rectangles can be computed easily by dynamic programming;
- ▶ $b_j a_j \leq (2 \cdot \text{additive error})$ in layer n. (Characterizes the ROBP's correctness.)

- ▶ What happens when moving on to the next layer:
 - Split each rectangle into k rectangles; (itself + shifting in each direction)

Rectangle Labeling

Label each node v in the ROBP with a rectangle $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_{k-1}, b_{k-1}]$. a_j (resp. b_j) is the smallest (resp. largest) possible number of j's in order to reach v.

- ▶ These rectangles can be computed easily by dynamic programming;
- ▶ $b_j a_j \leq (2 \cdot \text{additive error})$ in layer n. (Characterizes the ROBP's correctness.)

- ▶ What happens when moving on to the next layer:
 - Split each rectangle into k rectangles; (itself + shifting in each direction)

Merge some of these new rectangles.

Rectangle Labeling

Label each node v in the ROBP with a rectangle $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_{k-1}, b_{k-1}]$. a_j (resp. b_j) is the smallest (resp. largest) possible number of j's in order to reach v.

- ▶ These rectangles can be computed easily by dynamic programming;
- ▶ $b_j a_j \leq (2 \cdot \text{additive error})$ in layer *n*. (Characterizes the ROBP's correctness.)

- ▶ What happens when moving on to the next layer:
 - Split each rectangle into k rectangles; (itself + shifting in each direction)

- Merge some of these new rectangles.
- Each layer contains $\leq w$ rectangles.

Rectangle Labeling

Label each node v in the ROBP with a rectangle $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_{k-1}, b_{k-1}]$. a_j (resp. b_j) is the smallest (resp. largest) possible number of j's in order to reach v.

- ▶ These rectangles can be computed easily by dynamic programming;
- ▶ $b_j a_j \leq (2 \cdot \text{additive error})$ in layer *n*. (Characterizes the ROBP's correctness.)

- ▶ What happens when moving on to the next layer:
 - Split each rectangle into k rectangles; (itself + shifting in each direction)

- Merge some of these new rectangles.
- Each layer contains $\leq w$ rectangles.

Our Proof: Potential Function Analysis

Rectangle Labeling

Label each node v in the ROBP with a rectangle $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_{k-1}, b_{k-1}]$. a_j (resp. b_j) is the smallest (resp. largest) possible number of j's in order to reach v.

Our Proof: Potential Function Analysis

Rectangle Labeling

Label each node v in the ROBP with a rectangle $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_{k-1}, b_{k-1}]$. a_j (resp. b_j) is the smallest (resp. largest) possible number of j's in order to reach v.

- ▶ **Plan:** wish to define $\{\Phi_m\}_{0 \le m \le n}$, where Φ_m only depends on the rectangle labels in layer *m*, such that:
 - 1. If the ROBP correctly computes k-counter approximate counting, then Φ_n is small;
 - **2.** If w is small, then each increment $\Phi_{m+1} \Phi_m$ is *large*.

Our Proof: Potential Function Analysis

Rectangle Labeling

Label each node v in the ROBP with a rectangle $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_{k-1}, b_{k-1}]$. a_j (resp. b_j) is the smallest (resp. largest) possible number of j's in order to reach v.

▶ **Plan:** wish to define $\{\Phi_m\}_{0 \le m \le n}$, where Φ_m only depends on the rectangle labels in layer *m*, such that:

1. If the ROBP correctly computes k-counter approximate counting, then Φ_n is small; 2. If w is small, then each increment $\Phi_{m+1} - \Phi_m$ is large.

▶ If w is too small, then 2. implies that Φ_n is large, which contradicts 1.

Our Potential Function

Rectangle Labeling

Label each node v in the ROBP with a rectangle $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_{k-1}, b_{k-1}]$. a_j (resp. b_j) is the smallest (resp. largest) possible number of j's in order to reach v.

Our Potential Function

Rectangle Labeling

Label each node v in the ROBP with a rectangle $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_{k-1}, b_{k-1}]$. a_j (resp. b_j) is the smallest (resp. largest) possible number of j's in order to reach v.

• Only consider
$$\Phi_m$$
 $(n/2 \le m \le n)$; Consider all tuples in:

$$T := \{ (x_1, \cdots, x_{k-1}) \in \mathbb{Z}_{\geq 0}^{k-1} \colon x_1 + \cdots + x_{k-1} \le n/2 \}.$$

(All possible counts of $1, 2, \dots, k-1$ in the first n/2 inputs.)

Our Potential Function

Rectangle Labeling

Label each node v in the ROBP with a rectangle $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_{k-1}, b_{k-1}]$. a_j (resp. b_j) is the smallest (resp. largest) possible number of j's in order to reach v.

• Only consider Φ_m $(n/2 \le m \le n)$; Consider all tuples in: $T := \{(x_1, \cdots, x_{k-1}) \in \mathbb{Z}_{\ge 0}^{k-1} \colon x_1 + \cdots + x_{k-1} \le n/2\}.$

(All possible counts of $1, 2, \dots, k-1$ in the first n/2 inputs.)

For each tuple $(x_1, \dots, x_{k-1}) \in T$, let $\phi_m(x_1, \dots, x_{k-1})$ be the maximum of $(b_1 - x_1) + \dots + (b_{k-1} - x_{k-1})$ over all rectangles $[a_1, b_1] \times \dots \times [a_{k-1}, b_{k-1}]$ in layer m that contains (x_1, \dots, x_{k-1}) ; Finally, let $\Phi_m := \sum_{(x_1, \dots, x_{k-1}) \in T} \phi_m(x_1, \dots, x_{k-1}).$

< □ > < □ > りへへ

8/12

Correctly Computes $\implies \Phi_n$ is Small

Definition (The Potential Function)

Let $\phi_m(x_1, \dots, x_{k-1})$ be the maximum of $(b_1 - x_1) + \dots + (b_{k-1} - x_{k-1})$ over all rectangles $[a_1, b_1] \times \dots \times [a_{k-1}, b_{k-1}]$ in layer *m* that contains (x_1, \dots, x_{k-1}) . Let

$$\Phi_m := \sum_{x_1 + \dots + x_{k-1} \le n/2} \phi_m(x_1, \dots, x_{k-1}).$$

Correctly Computes $\implies \Phi_n$ is Small

Definition (The Potential Function)

Let $\phi_m(x_1, \dots, x_{k-1})$ be the maximum of $(b_1 - x_1) + \dots + (b_{k-1} - x_{k-1})$ over all rectangles $[a_1, b_1] \times \dots \times [a_{k-1}, b_{k-1}]$ in layer *m* that contains (x_1, \dots, x_{k-1}) . Let

$$\Phi_m := \sum_{x_1 + \dots + x_{k-1} \le n/2} \phi_m(x_1, \dots, x_{k-1}).$$

▶ In each rectangle in layer n, we have $b_j - a_j \leq (2 \cdot \text{additive error}) = n/(5k)$, so

$$\phi_n(x_1, \cdots, x_{k-1}) \le \sum_{j=1}^{k-1} (b_j - x_j) \le (k-1) \cdot n/(5k) \le n/5$$

Correctly Computes $\implies \Phi_n$ is Small

Definition (The Potential Function)

Let $\phi_m(x_1, \dots, x_{k-1})$ be the maximum of $(b_1 - x_1) + \dots + (b_{k-1} - x_{k-1})$ over all rectangles $[a_1, b_1] \times \dots \times [a_{k-1}, b_{k-1}]$ in layer *m* that contains (x_1, \dots, x_{k-1}) . Let

$$\Phi_m := \sum_{x_1 + \dots + x_{k-1} \le n/2} \phi_m(x_1, \dots, x_{k-1}).$$

▶ In each rectangle in layer n, we have $b_j - a_j \leq (2 \cdot \text{additive error}) = n/(5k)$, so

$$\phi_n(x_1, \cdots, x_{k-1}) \le \sum_{j=1}^{k-1} (b_j - x_j) \le (k-1) \cdot n/(5k) \le n/5$$

$$\implies \Phi_n \le n/5 \cdot \binom{n/2 + k - 1}{k-1}.$$

$$\le n/(5k) \left\{ \underbrace{x}_{\bullet} \\ \le n/(5k) \\ \le n/(5k$$

9/12

Definition (The Potential Function)

Let $\phi_m(x_1, \dots, x_{k-1})$ be the maximum of $(b_1 - x_1) + \dots + (b_{k-1} - x_{k-1})$ over all rectangles $[a_1, b_1] \times \dots \times [a_{k-1}, b_{k-1}]$ in layer *m* that contains (x_1, \dots, x_{k-1}) . Let

$$\Phi_m := \sum_{x_1 + \dots + x_{k-1} \le n/2} \phi_m(x_1, \dots, x_{k-1}).$$

Definition (The Potential Function)

Let $\phi_m(x_1, \dots, x_{k-1})$ be the maximum of $(b_1 - x_1) + \dots + (b_{k-1} - x_{k-1})$ over all rectangles $[a_1, b_1] \times \dots \times [a_{k-1}, b_{k-1}]$ in layer *m* that contains (x_1, \dots, x_{k-1}) . Let

$$\Phi_m := \sum_{x_1 + \dots + x_{k-1} \le n/2} \phi_m(x_1, \dots, x_{k-1}).$$

▶ Claim: For each $x = (x_1, \dots, x_{k-1})$, we have $\phi_{m+1}(x) \ge \phi_m(x)$. Moreover, if x is not at the left bottom corner of any rectangle in layer m, then $\phi_{m+1}(x) \ge \phi_m(x) + 1$.

Therefore,
$$\Phi_{m+1} - \Phi_m \ge \binom{n/2+k-1}{k-1} - w$$
. $(n/2 \le m \le n-1)$

Definition (The Potential Function)

Let $\phi_m(x_1, \dots, x_{k-1})$ be the maximum of $(b_1 - x_1) + \dots + (b_{k-1} - x_{k-1})$ over all rectangles $[a_1, b_1] \times \dots \times [a_{k-1}, b_{k-1}]$ in layer *m* that contains (x_1, \dots, x_{k-1}) . Let

$$\Phi_m := \sum_{x_1 + \dots + x_{k-1} \le n/2} \phi_m(x_1, \dots, x_{k-1}).$$

▶ Claim: For each $x = (x_1, \dots, x_{k-1})$, we have $\phi_{m+1}(x) \ge \phi_m(x)$. Moreover, if x is not at the left bottom corner of any rectangle in layer m, then $\phi_{m+1}(x) \ge \phi_m(x) + 1$.

The rectangle for computing $\phi_m(x)$:

$$b_2$$

 a_2
 a_1 b

• Therefore,
$$\Phi_{m+1} - \Phi_m \ge {\binom{n/2+k-1}{k-1}} - w. \ (n/2 \le m \le n-1)$$

 $\bullet \square \bullet \bullet \blacksquare \bullet \neg \land \circlearrowright 10/12$

Definition (The Potential Function)

Let $\phi_m(x_1, \dots, x_{k-1})$ be the maximum of $(b_1 - x_1) + \dots + (b_{k-1} - x_{k-1})$ over all rectangles $[a_1, b_1] \times \dots \times [a_{k-1}, b_{k-1}]$ in layer *m* that contains (x_1, \dots, x_{k-1}) . Let

$$\Phi_m := \sum_{x_1 + \dots + x_{k-1} \le n/2} \phi_m(x_1, \dots, x_{k-1}).$$

▶ Claim: For each $x = (x_1, \dots, x_{k-1})$, we have $\phi_{m+1}(x) \ge \phi_m(x)$. Moreover, if x is not at the left bottom corner of any rectangle in layer m, then $\phi_{m+1}(x) \ge \phi_m(x) + 1$.

The rectangle for computing $\phi_m(x)$:

It is contained in some rectangle in layer m + 1; Using this rectangle, we get an equal or larger $\phi_{m+1}(x)$.

• Therefore,
$$\Phi_{m+1} - \Phi_m \ge \binom{n/2+k-1}{k-1} - w$$
. $(n/2 \le m \le n-1)$

 $= \square \land = \square \land = \square \land = \square / 12$

Definition (The Potential Function)

Let $\phi_m(x_1, \dots, x_{k-1})$ be the maximum of $(b_1 - x_1) + \dots + (b_{k-1} - x_{k-1})$ over all rectangles $[a_1, b_1] \times \dots \times [a_{k-1}, b_{k-1}]$ in layer *m* that contains (x_1, \dots, x_{k-1}) . Let

$$\Phi_m := \sum_{x_1 + \dots + x_{k-1} \le n/2} \phi_m(x_1, \dots, x_{k-1}).$$

▶ Claim: For each $x = (x_1, \dots, x_{k-1})$, we have $\phi_{m+1}(x) \ge \phi_m(x)$. Moreover, if x is not at the left bottom corner of any rectangle in layer m, then $\phi_{m+1}(x) \ge \phi_m(x) + 1$.

The rectangle for computing $\phi_m(x)$:

Moreover part: we can shift this rectangle in some direction such that it still covers x;

► Therefore,
$$\Phi_{m+1} - \Phi_m \ge \binom{n/2+k-1}{k-1} - w$$
. $(n/2 \le m \le n-1)$

 $= \square \land = \square \land = \square \land = \square / 12$

Definition (The Potential Function)

Let $\phi_m(x_1, \dots, x_{k-1})$ be the maximum of $(b_1 - x_1) + \dots + (b_{k-1} - x_{k-1})$ over all rectangles $[a_1, b_1] \times \dots \times [a_{k-1}, b_{k-1}]$ in layer *m* that contains (x_1, \dots, x_{k-1}) . Let

$$\Phi_m := \sum_{x_1 + \dots + x_{k-1} \le n/2} \phi_m(x_1, \dots, x_{k-1}).$$

▶ Claim: For each $x = (x_1, \dots, x_{k-1})$, we have $\phi_{m+1}(x) \ge \phi_m(x)$. Moreover, if x is not at the left bottom corner of any rectangle in layer m, then $\phi_{m+1}(x) \ge \phi_m(x) + 1$.

The rectangle for computing $\phi_m(x)$:

 \bullet Moreover part: we can shift this rectangle in some direction such that it still covers x;

► Therefore,
$$\Phi_{m+1} - \Phi_m \ge \binom{n/2+k-1}{k-1} - w$$
. $(n/2 \le m \le n-1)$

 $= \square \land = \square \land = \square \land = \square / 12$

Definition (The Potential Function)

Let $\phi_m(x_1, \dots, x_{k-1})$ be the maximum of $(b_1 - x_1) + \dots + (b_{k-1} - x_{k-1})$ over all rectangles $[a_1, b_1] \times \dots \times [a_{k-1}, b_{k-1}]$ in layer *m* that contains (x_1, \dots, x_{k-1}) . Let

$$\Phi_m := \sum_{x_1 + \dots + x_{k-1} \le n/2} \phi_m(x_1, \dots, x_{k-1}).$$

▶ Claim: For each $x = (x_1, \dots, x_{k-1})$, we have $\phi_{m+1}(x) \ge \phi_m(x)$. Moreover, if x is not at the left bottom corner of any rectangle in layer m, then $\phi_{m+1}(x) \ge \phi_m(x) + 1$.

The rectangle for computing $\phi_m(x)$:

Moreover part: we can shift this rectangle in some direction such that it still covers x; Using this shifted rectangle, we get a $\phi_{m+1}(x)$ that increases by 1.

• Therefore,
$$\Phi_{m+1} - \Phi_m \ge \binom{n/2+k-1}{k-1} - w$$
. $(n/2 \le m \le n-1)$

 $= \operatorname{Im} (\operatorname{Im} (\operatorname{Im})) = \operatorname{Im} (\operatorname{Im} (\operatorname{$

Putting Them Together

► We have shown:

•
$$\Phi_n \le n/5 \cdot \binom{n/2+k-1}{k-1}$$
; and $\Phi_{n/2} \ge 0$;
• $\Phi_{m+1} - \Phi_m \ge \binom{n/2+k-1}{k-1} - w$; $(n/2 \le m \le n-1)$

□ > < @ > < Q

11/12

Putting Them Together

► We have shown:

•
$$\Phi_n \le n/5 \cdot \binom{n/2+k-1}{k-1}$$
; and $\Phi_{n/2} \ge 0$;
• $\Phi_{m+1} - \Phi_m \ge \binom{n/2+k-1}{k-1} - w$; $(n/2 \le m \le n-1)$

$$\implies n/5 \cdot \binom{n/2+k-1}{k-1} \ge \Phi_n \ge n/2 \cdot \left(\binom{n/2+k-1}{k-1} - w \right)$$

Putting Them Together

► We have shown:

•
$$\Phi_n \le n/5 \cdot \binom{n/2+k-1}{k-1}$$
; and $\Phi_{n/2} \ge 0$;
• $\Phi_{m+1} - \Phi_m \ge \binom{n/2+k-1}{k-1} - w$; $(n/2 \le m \le n-1)$

$$\implies n/5 \cdot \binom{n/2+k-1}{k-1} \ge \Phi_n \ge n/2 \cdot \left(\binom{n/2+k-1}{k-1} - w \right)$$

$$\implies w \ge 3/5 \cdot \binom{n/2 + k - 1}{k - 1} \ge 2^{\Omega(k \log(n/k))}$$

Thank You

▶ Thank you for listening.

