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The Problem Setting

Problem (k-Counter Approximate Counting)

Given an input z € [k]™. For each word j € [k], approximate the number of j’s in  with
additive error n/(10k). Regime: n > k> 1.
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Computation Model (Streaming Model)
We only have (standard order) read-once access to the input string. Memory size is
bounded.

» i.e., after reading the first ¢ input words, we can only carry limited amount of
information when moving on to the ¢ + 1,7 + 2,--- , n-th words.

Theorem (Main Result)
(Deterministic and worst-case) k-counter approximate counting requires

Q(klog(n/k)) bits of memory in the streaming model.

» Remark: the trivial algorithm (maintains the exact count) uses

log (nﬁ;l) < O(klog(n/k)) bits of memory. 2/12



Implication: Optimality of Misra-Gries

Theorem (Main Result)

(Deterministic and worst-case) k-counter approximate counting requires
Q(klog(n/k)) bits of memory in the streaming model.

» Misra-Gries Algorithm (1982): Let U,n > k > 1, given an input string = € [U]™.
Their streaming algorithm approximates the count of each j € U with additive error
n/(10k), using O(klog(n/k) + klog(U/k)) bits of memory.
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Implication: Optimality of Misra-Gries

Theorem (Main Result)

(Deterministic and worst-case) k-counter approximate counting requires
Q(klog(n/k)) bits of memory in the streaming model.

» Misra-Gries Algorithm (1982): Let U,n > k > 1, given an input string = € [U]™.
Their streaming algorithm approximates the count of each j € U with additive error
n/(10k), using O(klog(n/k) + klog(U/k)) bits of memory.

» On the lower bound:

> Previously, we already known an Q(klog(U/k)) lower bound. (Consider the case that k
words each appear n/k times, each k-subset of [U] must have a different output.)
» Our result implies an Q(klog(n/k)) lower bound!

3/12



Read-Once Branching Programs (ROBP)

» Streaming lower bounds <= ROBP width lower bounds.

» Multi-layered directed graph. Nodes in layer m represents all possible memory states
after the first m input words;

» n: input length; w: width (each layer contains < w nodes), w = 2memory size,

» Each node has k outgoing edges, which represents what is the next state given the
next input word.
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Previous Results

Theorem (Main Result)

(Deterministic and worst-case) k-counter approximate counting requires
Q(klog(n/k)) bits of memory in the streaming model.
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(Deterministic and worst-case) k-counter approximate counting requires
Q(klog(n/k)) bits of memory in the streaming model.

» For k = 2 (approximate the number of 1’s in a {0, 1}-string), previously we did not
even know a super-constant width lower bound!

> We only know lower bounds in the multiplicative error setting: approximate counting
with constant multiplicative error requires n*) width. [M. Ajtai et al. (2022)]
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Previous Results

Theorem (Main Result)

(Deterministic and worst-case) k-counter approximate counting requires
Q(klog(n/k)) bits of memory in the streaming model.

» For k = 2 (approximate the number of 1’s in a {0, 1}-string), previously we did not
even know a super-constant width lower bound!

> We only know lower bounds in the multiplicative error setting: approximate counting
with constant multiplicative error requires n*) width. [M. Ajtai et al. (2022)]

» The standard communication bottleneck method (consider the communication
complexity between the two halves of the input) does not work here.

» Sending an approximation of #1’s in the first half only needs O(1) bits.
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First Step: Rectangle Labeling

Rectangle Labeling

Label each node v in the ROBP with a rectangle [a1,b1] X [a2,b2] X - -+ X [ag—1,bp—_1].
a;j (resp. b;) is the smallest (resp. largest) possible number of j’s in order to reach v.

» These rectangles can be computed easily by dynamic programming;

» b; —a; < (2-additive error) in layer n. (Characterizes the ROBP’s correctness.)
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First Step: Rectangle Labeling
Rectangle Labeling

Label each node v in the ROBP with a rectangle [a1,b1] X [az, ba] X -

X [ag—1, bg—1]-
a;j (resp. b;) is the smallest (resp. largest) possible number of j’s in order to reach v.

» These rectangles can be computed easily by dynamic programming;

» b; —a; < (2-additive error) in layer n. (Characterizes the ROBP’s correctness.)

Example: (k= 3)
[1,4] x [2,2]
[2,3] x [4,6]0—2 o[1,5] x 3,7
3 %\{[uﬁt C(E)’lt%}in:
7 X 7 b
[47 5] X [5,6} [2’3} 9 [5’7}7
[4,5] x [5, 6].
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» b; —a; < (2-additive error) in layer n. (Characterizes the ROBP’s correctness.)

Translate the whole problem into analyzing the rectangles:
» What happens when moving on to the next layer:

Example: (k= 3)

o Must contain:
1 [a1 + 1,01 + 1] x [az2, bo]
v

2 Must contain:
[a1,b1] X [az,bz] O [al,bl] % [a2 21l By 1]

Must contain:

© [a1,b1] x [az, bo)]
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b2
(1 r
a |
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Our Proof: Potential Function Analysis

Rectangle Labeling

Label each node v in the ROBP with a rectangle [a1,b1] X [ag,bo] X -+ X [ag—1,bp—_1].
a; (resp. b;) is the smallest (resp. largest) possible number of j’s in order to reach v.
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» Plan: wish to define {®,, }o<m<n, where ®,, only depends on the rectangle labels in
layer m, such that:

1. If the ROBP correctly computes k-counter approximate counting, then ®,, is small;
2. If w is small, then each increment ®,,11 — ®,, is large.
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Label each node v in the ROBP with a rectangle [a1,b1] X [ag,bo] X -+ X [ag—1,bp—_1].
a; (resp. b;) is the smallest (resp. largest) possible number of j’s in order to reach v.

» Plan: wish to define {®,, }o<m<n, where ®,, only depends on the rectangle labels in
layer m, such that:

1. If the ROBP correctly computes k-counter approximate counting, then ®,, is small;
2. If w is small, then each increment ®,,11 — ®,, is large.

» If w is too small, then 2. implies that ®,, is large, which contradicts 1.
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Our Potential Function

Rectangle Labeling

Label each node v in the ROBP with a rectangle [a1, b1] X [ag,ba] X - -+ X [ag—1,bk—1]-
a; (resp. b;) is the smallest (resp. largest) possible number of j’s in order to reach v.
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Our Potential Function

Rectangle Labeling

Label each node v in the ROBP with a rectangle [a1, b1] X [ag,ba] X - -+ X [ag—1,bk—1]-

a; (resp. b;) is the smallest (resp. largest) possible number of j’s in order to reach v.

» Only consider @, (n/2 < m < n); Consider all tuples in: B.
T := {(ac17~~~ ,Tp—1) € Z;Blz 1+ -+ rp1 < n/2}

(All possible counts of 1,2,--- ,k — 1 in the first n/2 inputs.)
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Our Potential Function

Rectangle Labeling
Label each node v in the ROBP with a rectangle [a1, b1] X [ag,ba] X - -+ X [ag—1,bk—1]-

a; (resp. b;) is the smallest (resp. largest) possible number of j’s in order to reach v.
» Only consider @, (n/2 < m < n); Consider all tuples in: B.
T:= {(x17~~ ,Tp—1) € Z;Blz 1+t axp_1 < n/2}

(All possible counts of 1,2,--- ,k — 1 in the first n/2 inputs.)

» For each tuple (z1, - ,2x—1) € T, let ¢ (z1, - ,2k—1) be the maximum of
(b1 —x1)+ -+ (bp—1 — xx_1) over all rectangles [ay,b1] X -+ X [ag_1,bk_1] in layer m
that contains (x1,-- - ,Tr—_1); b2
Finally, let z
(I)m = Z ¢1’7’L(x13"' 7“"]@—1)' a2a1 bl

(z1,wp—1)ET
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Correctly Computes — &,, is Small

Definition (The Potential Function)

Let ¢ (21, ,2k—1) be the maximum of (by — z1) + -+ - + (bg—1 — xx_1) over all
rectangles [a1,b1] X -+ X [ak—1,bk—1] in layer m that contains (z1, - ,zk—1). Let
b, = Z ¢m(xla"' )wk—l)-

@1+t Th—1<n/2
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rectangles [a1,b1] X -+ X [ak—1,bk—1] in layer m that contains (z1, - ,zk—1). Let
b, = Z (ybm(xla"' )xk—l)-

@1+t Th—1<n/2

» In each rectangle in layer n, we have b; — a; < (2 - additive error) = n/(5k), so

k—1
On(@1, - ak—1) < ) (bj — ;) < (k—1)-n/(5k) <n/5

<.
Il

< n/(5k){ x

< n/(5k)
9/12



Correctly Computes — &,, is Small

Definition (The Potential Function)

Let ¢ (21, ,2k—1) be the maximum of (by — z1) + -+ - + (bg—1 — xx_1) over all
rectangles [a1,b1] X -+ X [ak—1,bk—1] in layer m that contains (z1, - ,zk—1). Let
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» In each rectangle in layer n, we have b; — a; < (2 - additive error) = n/(5k), so

k—1
On(@1, - ak—1) < ) (bj — ;) < (k—1)-n/(5k) <n/5

<.
Il

n/2+k—1
:»éngn/&( k-1 > gn/(5k){ z
——
<n/(5k)
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Small w = &,,,; — &, is Large

Definition (The Potential Function)

Let ¢pm(z1,- - ,2x—1) be the maximum of (by — z1) + - -+ + (bg—1 — xx_1) over all
rectangles [a1,b1] X -+ X [ak—1,bk—1] in layer m that contains (z1,-- ,zk—1). Let
ém = Z Qs’m(a:lv"' 7xk—1)~

@14 tap_1<n/2
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Small w = &,,,; — &, is Large

Definition (The Potential Function)

Let ¢pm(z1,- - ,2x—1) be the maximum of (by — z1) + - -+ + (bg—1 — xx_1) over all
rectangles [a1,b1] X -+ X [ak—1,bk—1] in layer m that contains (z1,-- ,zk—1). Let

D, = Z Om(T1, , Tp—1)-

@14 tap_1<n/2

» Claim: For each © = (x1,--- ,z5_1), we have ¢, 11(x) > ¢ (x). Moreover, if x is not
at the left bottom corner of any rectangle in layer m, then ¢,,+1(x) > ¢ (z) + 1.

» Therefore, ®,,,11 — P, > ("/it’i_l) —w. (n/2<m<n-1)
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al bl
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at the left bottom corner of any rectangle in layer m, then ¢,,+1(x) > ¢ (z) + 1.

The rectangle for computing ¢m (x):

ba
It is contained in some rectangle in layer m + 1;
2 Using this rectangle, we get an equal or larger ¢m+1(x).
a2
ai by

» Therefore, ®,,,11 — P, > ("/it’i_l) —w. (n/2<m<n-1)
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@14 tap_1<n/2

» Claim: For each © = (x1,--- ,z5_1), we have ¢, 11(x) > ¢ (x). Moreover, if x is not
at the left bottom corner of any rectangle in layer m, then ¢,,+1(x) > ¢ (z) + 1.

The rectangle for computing ¢m (x):

b Moreover part: we can shift this rectangle in some
. > direction such that it still covers x;
a%zl b, Using this shifted rectangle, we get a ¢m+1(x) that

increases by 1.

» Therefore, ®,,,11 — P, > ("/it’i_l) —w. (n/2<m<n-1) /
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Putting Them Together

» We have shown:
> @, <n/5- (VP and @0 > 0;

> D1 — P > (M2 —wy (/2 <m <n—1)
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Putting Them Together

» We have shown:
> @, <n/5- (VP and @0 > 0;

> D1 — P > (M2 —wy (/2 <m <n—1)

. <n/2k+k1— 1) > 8, 3 n/2- ( (n/Zk—i-kl— 1) - w)

— w>3/5 (”/2k+_k1— 1> > 9f(klog(n/k))
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Thank You

» Thank you for listening.
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