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The Problem Setting
Problem (k-Counter Approximate Counting)
Given an input x ∈ [k]n. For each word j ∈ [k], approximate the number of j’s in x with
additive error n/(10k). Regime: n ≫ k ≫ 1.

Computation Model (Streaming Model)
We only have (standard order) read-once access to the input string. Memory size is
bounded.

▶ i.e., after reading the first i input words, we can only carry limited amount of
information when moving on to the i+ 1, i+ 2, · · · , n-th words.

Theorem (Main Result)
(Deterministic and worst-case) k-counter approximate counting requires
Ω(k log(n/k)) bits of memory in the streaming model.

▶ Remark: the trivial algorithm (maintains the exact count) uses
log

(
n+k−1
k−1

)
≤ O(k log(n/k)) bits of memory.
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Implication: Optimality of Misra-Gries

Theorem (Main Result)
(Deterministic and worst-case) k-counter approximate counting requires
Ω(k log(n/k)) bits of memory in the streaming model.

▶ Misra-Gries Algorithm (1982): Let U, n ≫ k ≫ 1, given an input string x ∈ [U ]n.
Their streaming algorithm approximates the count of each j ∈ U with additive error
n/(10k), using O(k log(n/k) + k log(U/k)) bits of memory.

▶ On the lower bound:
▶ Previously, we already known an Ω(k log(U/k)) lower bound. (Consider the case that k

words each appear n/k times, each k-subset of [U ] must have a different output.)
▶ Our result implies an Ω(k log(n/k)) lower bound!
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Read-Once Branching Programs (ROBP)
▶ Streaming lower bounds ⇐= ROBP width lower bounds.
▶ Multi-layered directed graph. Nodes in layer m represents all possible memory states

after the first m input words;
▶ n: input length; w: width (each layer contains ≤ w nodes), w = 2memory size;
▶ Each node has k outgoing edges, which represents what is the next state given the

next input word.
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Previous Results

Theorem (Main Result)
(Deterministic and worst-case) k-counter approximate counting requires
Ω(k log(n/k)) bits of memory in the streaming model.

▶ For k = 2 (approximate the number of 1’s in a {0, 1}-string), previously we did not
even know a super-constant width lower bound!
▶ We only know lower bounds in the multiplicative error setting: approximate counting

with constant multiplicative error requires nΩ(1) width. [M. Ajtai et al. (2022)]

▶ The standard communication bottleneck method (consider the communication
complexity between the two halves of the input) does not work here.
▶ Sending an approximation of #1’s in the first half only needs O(1) bits.
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First Step: Rectangle Labeling
Rectangle Labeling
Label each node v in the ROBP with a rectangle [a1, b1]× [a2, b2]× · · · × [ak−1, bk−1].
aj (resp. bj) is the smallest (resp. largest) possible number of j’s in order to reach v.

▶ These rectangles can be computed easily by dynamic programming;
▶ bj − aj ≤ (2 · additive error) in layer n. (Characterizes the ROBP’s correctness.)

Translate the whole problem into analyzing the rectangles:
▶ What happens when moving on to the next layer:

▶ Split each rectangle into k rectangles; (itself + shifting in each direction)

a1 b1
a2

b2

▶ Merge some of these new rectangles.
▶ Each layer contains ≤ w rectangles.
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Example: (k = 3)

v
2
2
3

[1, 4]× [2, 2]

[2, 3]× [4, 6]

[4, 5]× [5, 6]

[1, 5]× [3, 7]

Must contain:
[1, 4]× [3, 3],
[2, 3]× [5, 7],
[4, 5]× [5, 6].
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v
1
2
3
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Must contain:
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Must contain:
[a1, b1]× [a2 + 1, b2 + 1]

Must contain:
[a1, b1]× [a2, b2]
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Our Proof: Potential Function Analysis

Rectangle Labeling
Label each node v in the ROBP with a rectangle [a1, b1]× [a2, b2]× · · · × [ak−1, bk−1].
aj (resp. bj) is the smallest (resp. largest) possible number of j’s in order to reach v.

▶ Plan: wish to define {Φm}0≤m≤n, where Φm only depends on the rectangle labels in
layer m, such that:

1. If the ROBP correctly computes k-counter approximate counting, then Φn is small;
2. If w is small, then each increment Φm+1 − Φm is large.

▶ If w is too small, then 2. implies that Φn is large, which contradicts 1.
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Our Potential Function
Rectangle Labeling
Label each node v in the ROBP with a rectangle [a1, b1]× [a2, b2]× · · · × [ak−1, bk−1].
aj (resp. bj) is the smallest (resp. largest) possible number of j’s in order to reach v.

▶ Only consider Φm (n/2 ≤ m ≤ n); Consider all tuples in:

T :=
{
(x1, · · · , xk−1) ∈ Zk−1

≥0 : x1 + · · ·+ xk−1 ≤ n/2
}
.

(All possible counts of 1, 2, · · · , k − 1 in the first n/2 inputs.)

▶ For each tuple (x1, · · · , xk−1) ∈ T , let ϕm(x1, · · · , xk−1) be the maximum of
(b1 − x1) + · · ·+ (bk−1 − xk−1) over all rectangles [a1, b1]× · · · × [ak−1, bk−1] in layer m
that contains (x1, · · · , xk−1);
Finally, let

Φm :=
∑

(x1,··· ,xk−1)∈T

ϕm(x1, · · · , xk−1).
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Correctly Computes =⇒ Φn is Small
Definition (The Potential Function)
Let ϕm(x1, · · · , xk−1) be the maximum of (b1 − x1) + · · ·+ (bk−1 − xk−1) over all
rectangles [a1, b1]× · · · × [ak−1, bk−1] in layer m that contains (x1, · · · , xk−1). Let

Φm :=
∑

x1+···+xk−1≤n/2

ϕm(x1, · · · , xk−1).

▶ In each rectangle in layer n, we have bj − aj ≤ (2 · additive error) = n/(5k), so

ϕn(x1, · · · , xk−1) ≤
k−1∑
j=1

(bj − xj) ≤ (k − 1) · n/(5k) ≤ n/5

=⇒ Φn ≤ n/5 ·
(
n/2 + k − 1

k − 1

)
.
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x︸ ︷︷ ︸
≤ n/(5k)

≤ n/(5k)

{
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Small w =⇒ Φm+1 − Φm is Large
Definition (The Potential Function)
Let ϕm(x1, · · · , xk−1) be the maximum of (b1 − x1) + · · ·+ (bk−1 − xk−1) over all
rectangles [a1, b1]× · · · × [ak−1, bk−1] in layer m that contains (x1, · · · , xk−1). Let

Φm :=
∑

x1+···+xk−1≤n/2

ϕm(x1, · · · , xk−1).

▶ Claim: For each x = (x1, · · · , xk−1), we have ϕm+1(x) ≥ ϕm(x). Moreover, if x is not
at the left bottom corner of any rectangle in layer m, then ϕm+1(x) ≥ ϕm(x) + 1.

The rectangle for computing ϕm(x):

a1 b1
a2

b2

•
x
•
x

It is contained in some rectangle in layer m+ 1;
Using this rectangle, we get an equal or larger ϕm+1(x).
Moreover part: we can shift this rectangle in some
direction such that it still covers x;

Using this shifted rectangle, we get a ϕm+1(x) that
increases by 1.

▶ Therefore, Φm+1 − Φm ≥
(
n/2+k−1

k−1

)
− w. (n/2 ≤ m ≤ n− 1)
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a2

b2

•
x

•
x

It is contained in some rectangle in layer m+ 1;
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Moreover part: we can shift this rectangle in some
direction such that it still covers x;

Using this shifted rectangle, we get a ϕm+1(x) that
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(
n/2+k−1

k−1

)
− w. (n/2 ≤ m ≤ n− 1)
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Putting Them Together

▶ We have shown:
▶ Φn ≤ n/5 ·

(
n/2+k−1

k−1

)
; and Φn/2 ≥ 0;

▶ Φm+1 − Φm ≥
(
n/2+k−1

k−1

)
− w; (n/2 ≤ m ≤ n− 1)

=⇒ n/5 ·
(
n/2 + k − 1

k − 1

)
≥ Φn ≥ n/2 ·

((
n/2 + k − 1

k − 1

)
− w

)

=⇒ w ≥ 3/5 ·
(
n/2 + k − 1

k − 1

)
≥ 2Ω(k log(n/k))
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Thank You

▶ Thank you for listening.


