Tight Streaming Lower Bounds for Deterministic Approximate Counting

Yichuan Wang (Tsinghua University)

Jan 13, 2025

The Problem Setting

Problem (*k***-Counter Approximate Counting)**

Given an input $x \in [k]^n$. For each word $j \in [k]$, approximate the number of *j*'s in *x* with additive error $n/(10k)$. Regime: $n \gg k \gg 1$.

The Problem Setting

Problem (*k***-Counter Approximate Counting)**

Given an input $x \in [k]^n$. For each word $j \in [k]$, approximate the number of *j*'s in *x* with additive error $n/(10k)$. Regime: $n \gg k \gg 1$.

Computation Model (Streaming Model)

We only have (standard order) read-once access to the input string. Memory size is bounded.

 \blacktriangleright i.e., after reading the first i input words, we can only carry limited amount of information when moving on to the $i + 1, i + 2, \dots, n$ -th words.

The Problem Setting

Problem (*k***-Counter Approximate Counting)**

Given an input $x \in [k]^n$. For each word $j \in [k]$, approximate the number of *j*'s in *x* with additive error $n/(10k)$. Regime: $n \gg k \gg 1$.

Computation Model (Streaming Model)

We only have (standard order) read-once access to the input string. Memory size is bounded.

▶ i.e., after reading the first *i* input words, we can only carry limited amount of information when moving on to the $i + 1, i + 2, \dots, n$ -th words.

Theorem (Main Result)

(Deterministic and worst-case) *k***-counter approximate counting requires** $\Omega(k \log(n/k))$ bits of memory in the streaming model.

 \blacktriangleright Remark: the trivial algorithm (maintains the exact count) uses $\log \binom{n+k-1}{k-1}$ ≤ $O(k \log(n/k))$ bits of memory.

Implication: Optimality of Misra-Gries

Theorem (Main Result)

(Deterministic and worst-case) *k***-counter approximate counting requires** $\Omega(k \log(n/k))$ bits of memory in the streaming model.

▶ **Misra-Gries Algorithm (1982):** Let $U, n \ge k \ge 1$, given an input string $x \in [U]^n$. Their streaming algorithm approximates the count of each $j \in U$ with additive error $n/(10k)$, using $O(k \log(n/k) + k \log(U/k))$ bits of memory.

Implication: Optimality of Misra-Gries

Theorem (Main Result)

- ▶ **Misra-Gries Algorithm (1982):** Let $U, n \ge k \ge 1$, given an input string $x \in [U]^n$. Their streaming algorithm approximates the count of each $j \in U$ with additive error $n/(10k)$, using $O(k \log(n/k) + k \log(U/k))$ bits of memory.
- \triangleright On the lower bound:
	- **►** Previously, we already known an $Ω(k \log(U/k))$ lower bound. (Consider the case that *k* words each appear *n*/*k* times, each *k*-subset of [*U*] must have a different output.)
	- ▶ Our result implies an $Ω(k log(n/k))$ lower bound!

Read-Once Branching Programs (ROBP)

- ▶ Streaming lower bounds \Leftarrow ROBP width lower bounds.
- ▶ Multi-layered directed graph. Nodes in layer *m* represents all possible memory states after the first *m* input words;
- ▶ *n*: input length; *w*: width (each layer contains \leq *w* nodes), $w = 2^{\text{memory size}}$;
- ▶ Each node has *k* outgoing edges, which represents what is the next state given the next input word.

4/12

Previous Results

Theorem (Main Result)

Previous Results

Theorem (Main Result)

- \triangleright For $k = 2$ (approximate the number of 1's in a $\{0, 1\}$ -string), previously we did not even know a super-constant width lower bound!
	- ▶ We only know lower bounds in the *multiplicative error* setting: approximate counting with constant multiplicative error requires $n^{\Omega(1)}$ width. [M. Ajtai et al. (2022)]

Previous Results

Theorem (Main Result)

- \triangleright For $k = 2$ (approximate the number of 1's in a $\{0, 1\}$ -string), previously we did not even know a super-constant width lower bound!
	- ▶ We only know lower bounds in the *multiplicative error* setting: approximate counting with constant multiplicative error requires $n^{\Omega(1)}$ width. [M. Ajtai et al. (2022)]
- \blacktriangleright The standard communication bottleneck method (consider the communication complexity between the two halves of the input) does not work here.
	- \blacktriangleright Sending an approximation of $\#1$'s in the first half only needs $O(1)$ bits.

Rectangle Labeling

- \blacktriangleright These rectangles can be computed easily by dynamic programming;
- ▶ $b_j a_j \leq (2 \cdot \text{additive error})$ in layer *n*. (Characterizes the ROBP's correctness.)

Rectangle Labeling

- ▶ These rectangles can be computed easily by dynamic programming;
- ▶ $b_j a_j \leq (2 \cdot \text{additive error})$ in layer *n*. (Characterizes the ROBP's correctness.)

Rectangle Labeling

Label each node *v* in the ROBP with a rectangle $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_{k-1}, b_{k-1}]$. a_j (resp. b_j) is the smallest (resp. largest) possible number of *j*'s in order to reach *v*.

- ▶ These rectangles can be computed easily by dynamic programming;
- ▶ $b_j a_j \leq (2 \cdot \text{additive error})$ in layer *n*. (Characterizes the ROBP's correctness.)

Translate the whole problem into analyzing the rectangles:

▶ What happens when moving on to the next layer:

Rectangle Labeling

Label each node *v* in the ROBP with a rectangle $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_{k-1}, b_{k-1}]$. a_j (resp. b_j) is the smallest (resp. largest) possible number of *j*'s in order to reach *v*.

- ▶ These rectangles can be computed easily by dynamic programming;
- ▶ $b_j a_j \leq (2 \cdot \text{additive error})$ in layer *n*. (Characterizes the ROBP's correctness.)

Translate the whole problem into analyzing the rectangles:

▶ What happens when moving on to the next layer:

←□→ ← (同→ + つ Q Q+ 6/12

Rectangle Labeling

Label each node *v* in the ROBP with a rectangle $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_{k-1}, b_{k-1}]$. a_j (resp. b_j) is the smallest (resp. largest) possible number of *j*'s in order to reach *v*.

- ▶ These rectangles can be computed easily by dynamic programming;
- ▶ $b_j a_j \leq (2 \cdot \text{additive error})$ in layer *n*. (Characterizes the ROBP's correctness.)

- \blacktriangleright What happens when moving on to the next layer:
	- \blacktriangleright Split each rectangle into *k* rectangles; (itself $+$ shifting in each direction)

Rectangle Labeling

Label each node *v* in the ROBP with a rectangle $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_{k-1}, b_{k-1}]$. a_j (resp. b_j) is the smallest (resp. largest) possible number of *j*'s in order to reach *v*.

- ▶ These rectangles can be computed easily by dynamic programming;
- ▶ $b_j a_j \leq (2 \cdot \text{additive error})$ in layer *n*. (Characterizes the ROBP's correctness.)

- ▶ What happens when moving on to the next layer:
	- \blacktriangleright Split each rectangle into *k* rectangles; (itself $+$ shifting in each direction)

Rectangle Labeling

Label each node *v* in the ROBP with a rectangle $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_{k-1}, b_{k-1}]$. a_j (resp. b_j) is the smallest (resp. largest) possible number of *j*'s in order to reach *v*.

- ▶ These rectangles can be computed easily by dynamic programming;
- ▶ $b_j a_j \leq (2 \cdot \text{additive error})$ in layer *n*. (Characterizes the ROBP's correctness.)

- \blacktriangleright What happens when moving on to the next layer:
	- \blacktriangleright Split each rectangle into *k* rectangles; (itself $+$ shifting in each direction)

▶ Merge some of these new rectangles.

Rectangle Labeling

Label each node *v* in the ROBP with a rectangle $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_{k-1}, b_{k-1}]$. a_j (resp. b_j) is the smallest (resp. largest) possible number of *j*'s in order to reach *v*.

- ▶ These rectangles can be computed easily by dynamic programming;
- ▶ $b_j a_j \leq (2 \cdot \text{additive error})$ in layer *n*. (Characterizes the ROBP's correctness.)

Translate the whole problem into analyzing the rectangles:

- \blacktriangleright What happens when moving on to the next layer:
	- \blacktriangleright Split each rectangle into *k* rectangles; (itself $+$ shifting in each direction)

▶ Merge some of these new rectangles.

Rectangle Labeling

Label each node *v* in the ROBP with a rectangle $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_{k-1}, b_{k-1}]$. a_j (resp. b_j) is the smallest (resp. largest) possible number of *j*'s in order to reach *v*.

- ▶ These rectangles can be computed easily by dynamic programming;
- ▶ $b_j a_j \leq (2 \cdot \text{additive error})$ in layer *n*. (Characterizes the ROBP's correctness.)

- ▶ What happens when moving on to the next layer:
	- \blacktriangleright Split each rectangle into *k* rectangles; (itself $+$ shifting in each direction)

- ▶ Merge some of these new rectangles.
- ▶ Each layer contains \leq *w* rectangles.

Rectangle Labeling

Label each node *v* in the ROBP with a rectangle $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_{k-1}, b_{k-1}]$. a_j (resp. b_j) is the smallest (resp. largest) possible number of *j*'s in order to reach *v*.

- ▶ These rectangles can be computed easily by dynamic programming;
- ▶ $b_j a_j \leq (2 \cdot \text{additive error})$ in layer *n*. (Characterizes the ROBP's correctness.)

Translate the whole problem into analyzing the rectangles:

▶ **What happens when moving on to the next layer:**

 \blacktriangleright Split each rectangle into *k* rectangles; (itself $+$ shifting in each direction)

- ▶ Merge some of these new rectangles.
- ▶ Each layer contains \leq *w* rectangles.

Our Proof: Potential Function Analysis

Rectangle Labeling

Our Proof: Potential Function Analysis

Rectangle Labeling

- ▶ **Plan:** wish to define ${\Phi_m}_{0 \leq m \leq n}$, where ${\Phi_m}$ only depends on the rectangle labels in layer *m*, such that:
	- **1.** If the ROBP correctly computes *k*-counter approximate counting, then Φ_n is *small*;
	- **2.** If *w* is small, then each increment $\Phi_{m+1} \Phi_m$ is *large*.

Our Proof: Potential Function Analysis

Rectangle Labeling

- ▶ **Plan:** wish to define ${\Phi_m}_{0 \leq m \leq n}$, where ${\Phi_m}$ only depends on the rectangle labels in layer *m*, such that:
	- **1.** If the ROBP correctly computes *k*-counter approximate counting, then Φ_n is *small*;
	- **2.** If *w* is small, then each increment $\Phi_{m+1} \Phi_m$ is *large*.
- \blacktriangleright If *w* is too small, then **2.** implies that Φ_n is large, which contradicts **1.**

Our Potential Function

Rectangle Labeling

Our Potential Function

Rectangle Labeling

Label each node *v* in the ROBP with a rectangle $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_{k-1}, b_{k-1}]$. a_j (resp. b_j) is the smallest (resp. largest) possible number of *j*'s in order to reach *v*.

 $T := \{(x_1, \dots, x_{k-1}) \in \mathbb{Z}_{\geq 0}^{k-1} : x_1 + \dots + x_{k-1} \leq n/2\}.$

▶ Only consider Φ*^m* (*n*/2 *≤ m ≤ n*); Consider all tuples in:

$$
\begin{array}{c}\n\vdots \\
\vdots \\
\vdots\n\n\dots\n\n\end{array}
$$

(All possible counts of $1, 2, \cdots, k-1$ in the first $n/2$ inputs.)

Our Potential Function

 T

Rectangle Labeling

Label each node *v* in the ROBP with a rectangle $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_{k-1}, b_{k-1}]$. a_j (resp. b_j) is the smallest (resp. largest) possible number of *j*'s in order to reach *v*.

▶ Only consider Φ*^m* (*n*/2 *≤ m ≤ n*); Consider all tuples in:

$$
:= \{(x_1, \cdots, x_{k-1}) \in \mathbb{Z}_{\geq 0}^{k-1} \colon x_1 + \cdots + x_{k-1} \leq n/2\}.
$$

(All possible counts of $1, 2, \cdots, k-1$ in the first $n/2$ inputs.)

▶ For each tuple $(x_1, \dots, x_{k-1}) \in T$, let $\phi_m(x_1, \dots, x_{k-1})$ be the maximum of $(b_1 - x_1) + \cdots + (b_{k-1} - x_{k-1})$ over all rectangles $[a_1, b_1] \times \cdots \times [a_{k-1}, b_{k-1}]$ in layer m that contains $(x_1, \dots, x_{k-1});$ *b*₂

Finally, let

$$
\Phi_m := \sum_{(x_1,\dots,x_{k-1}) \in T} \phi_m(x_1,\dots,x_{k-1}).
$$

$$
a_2 \overline{\begin{array}{c} x \\ \hline a_1 \\ \hline \end{array}} \quad b_1
$$

• • • • • • • • • • • • • • •

• • • • • •

8/12 **◆ロト→個→のQQ**

$\text{Correctly Computers} \implies \Phi_n \text{ is Small}$

Definition (The Potential Function)

Let $\phi_m(x_1, \dots, x_{k-1})$ be the maximum of $(b_1 - x_1) + \dots + (b_{k-1} - x_{k-1})$ over all rectangles $[a_1, b_1] \times \cdots \times [a_{k-1}, b_{k-1}]$ in layer *m* that contains (x_1, \dots, x_{k-1}) . Let

$$
\Phi_m := \sum_{x_1 + \dots + x_{k-1} \le n/2} \phi_m(x_1, \dots, x_{k-1}).
$$

$\text{Correctly Computers} \implies \Phi_n \text{ is Small}$

Definition (The Potential Function)

Let $\phi_m(x_1, \dots, x_{k-1})$ be the maximum of $(b_1 - x_1) + \dots + (b_{k-1} - x_{k-1})$ over all rectangles $[a_1, b_1] \times \cdots \times [a_{k-1}, b_{k-1}]$ in layer *m* that contains (x_1, \dots, x_{k-1}) . Let

$$
\Phi_m := \sum_{x_1 + \dots + x_{k-1} \le n/2} \phi_m(x_1, \dots, x_{k-1}).
$$

▶ In each rectangle in layer *n*, we have $b_j - a_j \leq (2 \cdot \text{additive error}) = n/(5k)$, so

$$
\phi_n(x_1, \dots, x_{k-1}) \le \sum_{j=1}^{k-1} (b_j - x_j) \le (k-1) \cdot n/(5k) \le n/5
$$

\$\le n/(5k)\$

$\text{Correctly Computers} \implies \Phi_n \text{ is Small}$

Definition (The Potential Function)

Let $\phi_m(x_1, \dots, x_{k-1})$ be the maximum of $(b_1 - x_1) + \dots + (b_{k-1} - x_{k-1})$ over all rectangles $[a_1, b_1] \times \cdots \times [a_{k-1}, b_{k-1}]$ in layer *m* that contains (x_1, \dots, x_{k-1}) . Let

$$
\Phi_m := \sum_{x_1 + \dots + x_{k-1} \le n/2} \phi_m(x_1, \dots, x_{k-1}).
$$

▶ In each rectangle in layer *n*, we have $b_j - a_j \leq (2 \cdot \text{additive error}) = n/(5k)$, so

$$
\phi_n(x_1, \dots, x_{k-1}) \le \sum_{j=1}^{k-1} (b_j - x_j) \le (k-1) \cdot n/(5k) \le n/5
$$

$$
\implies \Phi_n \le n/5 \cdot \binom{n/2 + k - 1}{k-1}.
$$

$$
\le n/(5k) \left\{ \underbrace{\begin{array}{c} x \\ x \\ \hline \text{...}} \end{array}} \right.
$$

9/12

 $\begin{array}{c} 4 \ \Box \rightarrow 4 \ \overline{\partial} \rightarrow 9 \ \mathrm{Q} \ \mathrm{C} \end{array}$

Definition (The Potential Function)

Let $\phi_m(x_1, \dots, x_{k-1})$ be the maximum of $(b_1 - x_1) + \dots + (b_{k-1} - x_{k-1})$ over all rectangles $[a_1, b_1] \times \cdots \times [a_{k-1}, b_{k-1}]$ in layer *m* that contains (x_1, \dots, x_{k-1}) . Let

$$
\Phi_m := \sum_{x_1 + \dots + x_{k-1} \le n/2} \phi_m(x_1, \dots, x_{k-1}).
$$

Definition (The Potential Function)

Let $\phi_m(x_1, \dots, x_{k-1})$ be the maximum of $(b_1 - x_1) + \dots + (b_{k-1} - x_{k-1})$ over all rectangles $[a_1, b_1] \times \cdots \times [a_{k-1}, b_{k-1}]$ in layer *m* that contains (x_1, \dots, x_{k-1}) . Let

$$
\Phi_m := \sum_{x_1 + \dots + x_{k-1} \leq n/2} \phi_m(x_1, \dots, x_{k-1}).
$$

▶ **Claim:** For each $x = (x_1, \dots, x_{k-1})$, we have $\phi_{m+1}(x) \ge \phi_m(x)$. Moreover, if *x* is not at the left bottom corner of any rectangle in layer *m*, then $\phi_{m+1}(x) \geq \phi_m(x) + 1$.

Definition (The Potential Function)

Let $\phi_m(x_1, \dots, x_{k-1})$ be the maximum of $(b_1 - x_1) + \dots + (b_{k-1} - x_{k-1})$ over all rectangles $[a_1, b_1] \times \cdots \times [a_{k-1}, b_{k-1}]$ in layer *m* that contains (x_1, \dots, x_{k-1}) . Let

$$
\Phi_m := \sum_{x_1 + \dots + x_{k-1} \leq n/2} \phi_m(x_1, \dots, x_{k-1}).
$$

▶ **Claim:** For each $x = (x_1, \dots, x_{k-1})$, we have $\phi_{m+1}(x) \ge \phi_m(x)$. Moreover, if *x* is not at the left bottom corner of any rectangle in layer *m*, then $\phi_{m+1}(x) \geq \phi_m(x) + 1$.

▶ Therefore,
$$
\Phi_{m+1} - \Phi_m \geq {n/2 + k - 1 \choose k - 1} - w
$$
. $(n/2 \leq m \leq n - 1)$

Definition (The Potential Function)

Let $\phi_m(x_1, \dots, x_{k-1})$ be the maximum of $(b_1 - x_1) + \dots + (b_{k-1} - x_{k-1})$ over all rectangles $[a_1, b_1] \times \cdots \times [a_{k-1}, b_{k-1}]$ in layer *m* that contains (x_1, \dots, x_{k-1}) . Let

$$
\Phi_m := \sum_{x_1 + \dots + x_{k-1} \leq n/2} \phi_m(x_1, \dots, x_{k-1}).
$$

▶ **Claim:** For each $x = (x_1, \dots, x_{k-1})$, we have $\phi_{m+1}(x) \ge \phi_m(x)$. Moreover, if *x* is not at the left bottom corner of any rectangle in layer *m*, then $\phi_{m+1}(x) \geq \phi_m(x) + 1$.

▶ Therefore,
$$
\Phi_{m+1} - \Phi_m \geq {n/2 + k - 1 \choose k - 1} - w
$$
. $(n/2 \leq m \leq n - 1)$

Definition (The Potential Function)

Let $\phi_m(x_1, \dots, x_{k-1})$ be the maximum of $(b_1 - x_1) + \dots + (b_{k-1} - x_{k-1})$ over all rectangles $[a_1, b_1] \times \cdots \times [a_{k-1}, b_{k-1}]$ in layer *m* that contains (x_1, \dots, x_{k-1}) . Let

$$
\Phi_m := \sum_{x_1 + \dots + x_{k-1} \leq n/2} \phi_m(x_1, \dots, x_{k-1}).
$$

▶ **Claim:** For each $x = (x_1, \dots, x_{k-1})$, we have $\phi_{m+1}(x) \ge \phi_m(x)$. Moreover, if *x* is not at the left bottom corner of any rectangle in layer *m*, then $\phi_{m+1}(x) \geq \phi_m(x) + 1$.

▶ Therefore,
$$
\Phi_{m+1} - \Phi_m \geq {n/2 + k - 1 \choose k - 1} - w
$$
. $(n/2 \leq m \leq n - 1)$

Definition (The Potential Function)

Let $\phi_m(x_1, \dots, x_{k-1})$ be the maximum of $(b_1 - x_1) + \dots + (b_{k-1} - x_{k-1})$ over all rectangles $[a_1, b_1] \times \cdots \times [a_{k-1}, b_{k-1}]$ in layer *m* that contains (x_1, \dots, x_{k-1}) . Let

$$
\Phi_m := \sum_{x_1 + \dots + x_{k-1} \leq n/2} \phi_m(x_1, \dots, x_{k-1}).
$$

▶ **Claim:** For each $x = (x_1, \dots, x_{k-1})$, we have $\phi_{m+1}(x) \ge \phi_m(x)$. Moreover, if *x* is not at the left bottom corner of any rectangle in layer *m*, then $\phi_{m+1}(x) \geq \phi_m(x) + 1$.

► Therefore,
$$
\Phi_{m+1} - \Phi_m \geq {n/2 + k - 1 \choose k - 1} - w
$$
. $(n/2 \leq m \leq n - 1)$

Definition (The Potential Function)

Let $\phi_m(x_1, \dots, x_{k-1})$ be the maximum of $(b_1 - x_1) + \dots + (b_{k-1} - x_{k-1})$ over all rectangles $[a_1, b_1] \times \cdots \times [a_{k-1}, b_{k-1}]$ in layer *m* that contains (x_1, \dots, x_{k-1}) . Let

$$
\Phi_m := \sum_{x_1 + \dots + x_{k-1} \leq n/2} \phi_m(x_1, \dots, x_{k-1}).
$$

▶ **Claim:** For each $x = (x_1, \dots, x_{k-1})$, we have $\phi_{m+1}(x) \ge \phi_m(x)$. Moreover, if *x* is not at the left bottom corner of any rectangle in layer *m*, then $\phi_{m+1}(x) \geq \phi_m(x) + 1$.

► Therefore,
$$
\Phi_{m+1} - \Phi_m \geq {n/2 + k - 1 \choose k - 1} - w
$$
. $(n/2 \leq m \leq n - 1)$

Putting Them Together

- \blacktriangleright We have shown:
	- ▶ $\Phi_n \leq n/5 \cdot \binom{n/2+k-1}{k-1}$; and $\Phi_{n/2} \geq 0$;
	- ▶ Φ*^m*+1 *−* Φ*^m ≥* (*ⁿ*/2+*k−*¹ *k−*1) *− w*; (*n*/2 *≤ m ≤ n −* 1)

Putting Them Together

- \blacktriangleright We have shown:
	- ▶ $\Phi_n \leq n/5 \cdot \binom{n/2+k-1}{k-1}$; and $\Phi_{n/2} \geq 0$;
	- ▶ Φ*^m*+1 *−* Φ*^m ≥* (*ⁿ*/2+*k−*¹ *k−*1) *− w*; (*n*/2 *≤ m ≤ n −* 1)

$$
\implies n/5 \cdot \binom{n/2+k-1}{k-1} \ge \Phi_n \ge n/2 \cdot \left(\binom{n/2+k-1}{k-1} - w \right)
$$

Putting Them Together

- \blacktriangleright We have shown:
	- ▶ $\Phi_n \leq n/5 \cdot \binom{n/2+k-1}{k-1}$; and $\Phi_{n/2} \geq 0$;
	- ▶ Φ*^m*+1 *−* Φ*^m ≥* (*ⁿ*/2+*k−*¹ *k−*1) *− w*; (*n*/2 *≤ m ≤ n −* 1)

$$
\Rightarrow n/5 \cdot \binom{n/2 + k - 1}{k - 1} \ge \Phi_n \ge n/2 \cdot \left(\binom{n/2 + k - 1}{k - 1} - w \right)
$$

$$
\Rightarrow w \ge 3/5 \cdot \binom{n/2 + k - 1}{k - 1} \ge 2^{\Omega(k \log(n/k))}
$$

 \Box

Thank You

 $\blacktriangleright\,$ Thank you for listening.